

Introduction

- Urgent need for efficient allocation of resources for conserving biodiversity
- Governments supplementing public conservation with market-based policies for conservation on private land
- What are advantages of private land conservation?
- How should resources be split between public and private conservation
- We're developing models to examine this question

Multi-tenured conservation reserves

- How to combine
 - purchasing land for *public* conservation reserves
 - private land conservation
- A trade-off:
 - public conservation: high price, high security
 - private conservation contracts: low price, low security

How to split resources ?

Background

- Western (Basalt) Plains Natural Temperate Grassland
- One of Australia's most endangered ecosystems
 - < 0.5% of original extent remains
- Most remaining remnants on private land

Background

Centre of Melbourne

- Western (Basalt) Plains Natural Temperate Grassland
- One of Australia's most endangered ecosystems
 - < 0.5% of original extent remains
- Most remaining remnants on private land

Centre of Melbourne

- Define landscape
- Define spp distributions
- Define costs and PUs
- Undertake conservation actions
- Model system dynamics
- Collate Results

- Define landscape
- Define spp distributions
- Define costs and PUs
- Undertake conservation actions
- Model system dynamics
- Collate Results

In this case only have 1 "species"

- Define landscape
- Define spp distributions
- Define costs and PUs
- Undertake conservation actions
- Model system dynamics
- Collate Results

- Define landscape
- Define spp distributions
- Define costs and PUs
- Undertake conservation actions
- Model system dynamics
- Collate Results

Used a range of values for the ratio

[management] : [purchase]

Show results for 1:10 and 1:20

- Define landscape
- Define spp distributions
- Define costs and PUs
- Undertake conservation actions
- Model system dynamics
- Collate Results

- Fixed budget each time step (~1% total cost)
- Each time step can spend entire budget on:
 - public conservation
 - private conservation
 - split equally between both

- Define landscape
- Define spp distributions
- Define costs and PUs
- Undertake conservation actions
- Model system dynamics
- Collate Results

- Development
 - randomly select parcels to be developed
 - assume all grassland on developed parcels removed
- Grassland condition change

- Define landscape
- Define spp distributions
- Define costs and PUs
- Undertake conservation actions
- Model system dynamics
- Collate Results

- Define landscape
- Define spp distributions
- Define costs and PUs
- Undertake conservation actions
- Model system dynamics
- Collate Results

 Aggregate scores of grassland condition <u>over time</u>

- Define landscape
- Define spp distributions
- Define costs and PUs
- Undertake conservation actions
- Model system dynamics
- Collate Results

- 5 year time steps
- Run model for 100 years

- Define landscape
- Define spp distributions
- Define costs and PUs
- Undertake conservation actions
- Model system dynamics
- Collate Results

Langford WT, Gordon A, Bastin L (2009) When do conservation planning methods deliver? Quantifying the consequences of uncertainty. *Ecological Informatics*, 4, 123–135.

Animations of sequential model

All public conservation

All privateconservation

Animations of sequential model

All privateconservationwith loss

Ecological implications of the outcomes

Quality versus quantity

Ecological implications of the outcomes

- Quality versus quantity
- Species habitat requirements

Ecological implications of the outcomes

- Quality versus quantity
- Species habitat requirements
- Time horizon of evaluation

Assumptions & Limitations

- Selection of landholders
- Economic models
- Effectiveness of management
- Uncertainties in:
 - vegetation condition model
 - grassland condition map

Conclusions

- A method for <u>evaluating</u> the consequences for conservation policies:
 - models *ecological* and *socio-economic* aspects
 - allows evaluation of different policy structures
 - the utility & visualisation of a complex sequential model
- (Currently) no generalisable answers to preferred policy structure
 - depends on assumptions and objectives
- Assess policy robustness to future adversities and catastrophes
- Robust prioritisations that deal with deep uncertainty: ensembles of system models, scenario modelling

